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Abstract
An augmented distorted planewave plus local orbital basis set has been developed and
implemented in a simple fashion in order to test its efficiency for electronic structure
calculations. It is based on the idea of using distorted planewaves (Gygi 1993 Phys. Rev. B
48 11692) as basis functions in the interstitial region instead of ordinary planewaves, as in the
usual linearized augmented planewave and augmented planewave plus local orbitals methods.
This is shown to lead to a significantly more rapid convergence for open structures as well as a
modestly improved convergence for close packed structures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Planewaves are a common and in a sense a natural choice
of basis set in electronic structure calculations for crystals.
This stems from the fact that planewaves are a complete
and orthonormal set, and that each basis function fulfills the
crystal symmetry and has a trivial Fourier transform. The
disadvantage is that a large number of planewaves are often
needed to converge the wavefunction, charge density and
potential, which vary rapidly near the atomic centers even with
the softest state-of-the-art pseudopotentials. It is well known
that the number of necessary basis functions can be drastically
reduced by introducing muffin tin (MT) spheres centered at
each atom, on which the planewaves are matched onto a set
of local functions, which are solutions to the local spherically
averaged potential. This is the commonly used augmented
planewave (APW) method, proposed by Slater in 1937 [1],
which has meanwhile evolved into the accurate and popular
linear augmented planewave (LAPW) method [2] and the
related augmented planewave plus local orbital (APW + lo)
method [3].

Another way of reducing the number of planewaves
required was proposed by Gygi in 1993 [4]. By using
planewaves on adaptive curved space coordinates, Gygi
showed that it is possible to substantially reduce the number
of basis functions needed to describe the electronic structure

of solids, molecules and atoms. In this original approach the
arbitrary coordinate transformation was used as an additional
variational freedom. An alternative formulation was later
proposed by Gygi, in which the coordinate transformations
were explicit and linked to the atomic positions [5, 6].

In this paper we suggest a combination of APW-like
methods and the distorted space method and present tests of
this basis set. We keep the basis functions unchanged in the
atomic vicinity where we already have powerful methods for
finding good basis functions [2, 7, 3], but use planewaves
on a distorted space mesh in the interstitial region in order
to improve convergence, especially for open systems. After
a short introduction to the APW-like methods, we review
the concept of distorted planewaves and describe how they
can be utilized in the augmentation technique. In this
paper we then study the efficiency of this basis using a
simplified implementation of the resulting augmented distorted
planewave (ADPW) method. We finish with a conclusion and
the outlook for future implementations.

1.1. APW + lo basis set

In the APW + lo method, the APW part of the basis set
consists of planewaves in the interstitial region, augmented in
the MTα sphere of atom α to radial functions times spherical
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harmonics:

φG(k; r) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
�

ei(G+k)·r, r ∈ I
∑

�,mα

aα�mG f α�m(r)Y�m(r̂), r ∈ MTα .
(1)

The radial functions f α�m(r) are solutions to the radial
Schrödinger equation (in Hartree atomic units)

[

−1

2

d2

dr 2
+ l(l + 1)

2r 2
+ V (r)− εα�m

]

r f α�m(r) = 0,

f α�m(R
α
MT) �= 0,

(2)

where RαMT is the MT radius of atom α and εα�m is the so-called
linearization energy. The matching between the planewaves
and the augmentation wavefunctions of an atom at rα with a
MT-sphere radius RαMT is made by the analytical expansion of
the planewaves in spherical harmonics, which gives matching
coefficients

aα�m = 4π

f α�m(RMT)
√
�

eiG·rα i l jl(|G|RMT)Y
∗
�m(Ĝ). (3)

In order to incorporate the energy dependence of the local
functions f α�m some local orbitals are added to the basis set

φlo
�mα(r)

=
⎧
⎨

⎩

0, r ∈ I
(

alo,α
�m f lo,α

�m (r)+ blo,α
�m f α�m(r)

)
Y�m(r̂), r ∈ MTα ,

(4)

where f lo,α
�m (r) are solutions to the same scalar relativistic

version of equation (2) as f α�m(r), but with different
energy parameters ε

lo,α
�m . The matching condition gives

alo,α
�m f lo,α

�m (RMT)+ blo,α
�m f α�m(RMT) = 0.

While the necessary local orbitals are in practice fixed
and determined by the number of atoms in the unit cell, the
number of APWs scales with the unit cell volume. However,
the convergence of the APW is determined by the matching
at the MT boundary and an empirical rule of thumb is that a
sufficiently large basis set is obtained with a planewave cut-off
of Gmax = maxα{2(�α+2)/RαMT}, where �α is the largest open
shell azimuthal quantum number for atom α.

We emphasize that in this method, radial functions,
generated by numerical solution of the wave equation are
used inside atom centered spheres, and that planewaves, while
present throughout space, are only used in the interstitial
region outside the spheres. Thus in the APW method there
are two regions where planewaves provide more variational
freedom than needed: (1) far from the atomic centers, as in
conventional planewave calculations, and (2) within the MT
spheres. On the other hand a very accurate solution is needed
at the sphere boundaries in order to obtain proper matching for
the augmentation.

2. New basis for the interstitial region

In 1993 Gygi [4] realized that by using planewaves on a
distorted space mesh r′(r), the planewaves could be made to
look more like atomic centered basis functions close to the
atomic sites:

ηG(k; r) = ηG(r)eik·r = 1√
�

eik·r
∣
∣
∣
∣
∂r′

∂r

∣
∣
∣
∣

1/2

eiG·r′
, (5)

where� is the unit cell volume and |∂r′/∂r| is the determinant
of the Jacobian matrix of the coordinate transform. These
distorted planewaves (DPW) form a complete and orthonormal
basis set [4]. In contrast to earlier studies, we have chosen to
break out the Bloch phase factor for reasons which will become
clear later on.

As suggested by Gygi in 1995 [5, 6], we will let each
atom distort space around it through a distorting function F
and element specific parameters, i.e. the strength, A, and the
range, R0 of the distortion:

r′ = r +
∑

α

Aα
(r − rα)

Rα0
F

(∣
∣
∣
∣
r − rα

Rα0

∣
∣
∣
∣

)

. (6)

The distorting function F should be chosen in a way that
enhances the number of nodes of the basis functions in the
vicinity of a nucleus and reduce the number of nodes in the
interstitial. The function F should then have a maximum
either at the nuclear position or, in our case, at least inside
the MT spheres. The distorting function should be smooth
and not too rapidly varying to avoid numerical instabilities.
Gygi suggests several nuclear centered distorting functions in
his papers [4–6]. One of them is

F(x) = sech(x), (7)

which is the one we have focused upon in this study. However,
a related distorting function with maximum distortion close to
the MT-sphere boundary,

F(x) = sech(x) tanh(x), (8)

is suggested too. The choice of distorting function might
significantly alter the efficiency of the method and further
studies to find the most suitable distorting function may be
useful.

2.1. Augmented distorted planewaves

In the same way as the PW before, the DPW may be
augmented in the MT spheres, giving rise to augmented
distorted planewaves (ADPW)

ψG(k; r) =
⎧
⎨

⎩

ηG(k; r), r ∈ I
∑

�mα

ãα�mG f α�m(r)Y�m(r̂), r ∈ MTα. (9)

Difficulties arise from the fact that we no longer have
planewaves in the interstitial region. For instance, the matching
must be done by numerical expansion of the DPWs in spherical
harmonics, solving Poisson’s equation for the interstitial region

2



J. Phys.: Condens. Matter 20 (2008) 235241 F Bultmark et al

is no longer trivial and the surface contribution to the kinetic
energy has to be calculated in a different way. Although
difficult, these are all problems that can be solved. However,
prior to a full implementation, it is desirable to determine if the
basis set is sufficiently efficient to justify it. This is the purpose
of the present study. Here, since we are mainly interested in
investigating the potential gain with this new basis, we use
another simpler approach, which circumvents these problems.
The DPWs can be expressed as an expansion of ordinary
planewaves

ηG′(k; r) = exp(ik · r)
∑

G

exp(iG · r)UGG′, (10)

where UGG′ are the inverse Fourier transform coefficients of
ηG′(r). It is in order to facilitate this transform that we
redefined the DPW with an explicit Bloch wave factor. Now,
by using the known matching coefficients for the PW, we get a
transformation between APW and ADPW

ψG′(k; r) =
∑

G

φG(k; r)UGG′ . (11)

Furthermore, the ADPW Hamiltonian (or overlap) matrix can
be directly described in terms of the APW Hamiltonian (or
overlap) matrix

H̃pq = 〈ψG′
p
|H |ψG′

q
〉 =

∑

i j

U∗
Gi G′

p
〈φGi |H |φG j 〉UG j G′

q
(12)

or in short
H̃ = U † HU. (13)

Notice, that since the local orbital part of the APW + lo
basis set is unchanged, the transformation matrix is a unit
matrix in terms of this part of the basis. Hence, we can set
up the Hamiltonian and overlap matrices in undistorted space
in terms of APW and then transform it into an ADPW basis.
This give us a secular problem:

{
H̃ − εk Õ

}
c̃ = {

U † (H − εk O)U
}

U †c = 0. (14)

The transformation matrices U are k independent and only
have to be calculated once. The distorted space, implicitly
incorporated in the ADPW, can lead to a faster convergence
in terms of the number of basis functions. That is, in practice
we can use a rectangular N × M transformation matrix U , in
order to reduce the secular matrix from N to M dimensions.
After the diagonalization we back transform the eigenvector

cG =
∑

G′
UGG′ c̃G′ , (15)

and can construct the charge density etc in ordinary space.
As already mentioned, this implementation does not provide
the full gain in computational effort of the ADPW method,
since the set-up time is longer not shorter than for the APW
method, but it gives us the opportunity to carefully investigate
the efficiency of this new basis set.

The above simplified scheme has been implemented in the
open source APW + lo code EXCITING [8].

Figure 1. Radial density of space points ρ due to distortion from a
single nucleus, given by equation (6), using the atom centered
distortion function (ADPW I) and the MT optimized distortion
function (ADPW II). The dimensionless parameters α and d could be
interpreted as the strength and range of the distortion.

3. Results and discussion

As mentioned earlier, the efficiency of the basis set will depend
on the distorting function used and the choice of parameters A
and R0. To find the best choice of parameters and distorting
function we compare calculations of single atoms of different
species using a range of parameters and the atom centered
distorting function from equation (7), and a modified version,
with maximum distortion around the muffin tin sphere from
equation (8). To facilitate the comparison between the two
distorting functions we use the dimensionless parameters α and
d defined by the relations

dr ′

dr

∣
∣
∣
∣
r=dRMT

= 1, (16)

α = dr ′

dr

∣
∣
∣
∣

RMT

. (17)

For any distorting function the parameter d is the number of
MT-sphere radii from the nucleus where the radial density of
space points due to the distortion from the nucleus is equal to
the density of space points in undistorted space. The parameter
α is the relative radial density of space points at the MT-sphere
boundary.

An interpretation of the two parameters and the radial
density of space points for the two distorting functions
investigated in this paper (ADPW I given by equation (7) and
ADPW II given by equation (8)) is illustrated in figure 1. Using
the same d and α for the two different distorting functions
gives a similar distortion around the MT spheres. To find
the best choice of parameters we have investigated a range of
parameters α and d for two extreme systems, free atoms of
some chosen atomic species and the close packed structure for
the same species. In figure 2 the results of ADPW calculations
for single atoms (treated as a simple cubic lattice with large
lattice parameter) of copper and potassium using a range of
parameters α and d are shown. Here we start from a converged
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(a) (b)

(b) (d)

Figure 2. Distortion parameters for single atoms. In the colored region the sum of eigenvalues using M basis functions, expanded in
N planewaves is lower than the sum of eigenvalues using M APW basis functions. In the colored region the sum of eigenvalues fulfill

EADPW
sum (M) < EAPW

sum (M) and in the innermost, darkest region EADPW
sum (M)− EAPW

sum (N) < EAPW
sum (M)−EAPW

sum (N)
10 . Here M

N ≈ 0.9.

(a) (b)

Figure 3. Distortion parameters for close packed structures. The region of acceptable parameters is much smaller due to the influence on the
distortion from neighboring atoms.

charge density with N APW planewaves and do one more
iteration with M APW planewaves, where M/N ≈ 0.9 and
with M ADPW basis functions and compare the results. The
closer the sum of eigenvalues of the smaller ADPW basis
calculation is to the sum of eigenvalues of the larger APW basis
calculation the better. The parameters in the darkest region in
figures 2 and 3 give eigenvalues that fulfill the relation

EADPW
sum (M) − EAPW

sum (N) <
EAPW

sum (M)− EAPW
sum (N)

10
. (18)

Figure 3 shows the same for some close packed structures of
the same atomic species.

The results are summarized in table 1. As expected
both the range d and the strength α of the distortion has to
be smaller for close packed structures than for single atoms.
Since we use the simplified approach of transforming the
APW to the ADPW basis set as in equation (11) through a
Fourier transform, the ADPW II set is less adapted with its
more structured distortion (equation (8)). Therefore, we have
concentrated our present study on the ADPW I basis set for the
denser structures.

For the s-metal K we may use the strongest distortion due
to the open structure and small MT-sphere radius compared to
the lattice parameter. The more close packed d-metals Cu and
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(a) (b)

(c) (d)

Figure 4. For open structures the ADPW-lo basis set converges considerably faster with respect to the number of basis functions than the
APW-lo basis. In the case of bct and fcc structures the convergence is only slightly faster. The distortion parameters are chosen to give a
reasonable convergence for both close packed and open structures.

Table 1. Optimal parameters for a small change ( M
N ≈ 0.9) in the

number of basis functions for ADPW I and ADPW II (in
parenthesis). The optimal values are always surrounded by a region
of acceptable parameters that are close to optimal (see equation (18)
and figures 2 and 3).

Species/structure RMT (a0) d α

Carbon 1.45
Atom 2.5 (1.7) 0.7 (0.6)
Graphite 2.1 0.2
Diamond 1.9 0.1

Copper 2.0
Atom 1.9 (1.5) 0.5 (0.6)
fcc 1.5 0.1

Iron 2.0
bcc 1.5 0.1

Potassium 2.2
Atom 1.9 (1.9) 0.7 (0.9)
bcc 1.3 0.2

Fe are, however, more sensitive to large distorting parameters
α and d .

In figures 4 and 5 convergence tests with respect to
basis set sizes, as described by the dimensionless parameter
R(min)

MT |G+k|max, are displayed for Cu and K atoms in different
geometries. With the same convergence criterion, 1 mHa, it is
clear that for the most open systems a large gain in basis set
sizes is obtained for the ADPW + lo basis compared to the
APW + lo basis. This gain is smaller when the MT spheres

start to fill up a larger part of the volume and is marginal for
close packed fcc Cu.

For larger differences in size of the basis sets, the range
of usable parameters is increased. In general the method
works better when the number of planewaves needed to
converge the APW calculation is large, for open systems
where lattice parameters are large and/or where the MT-
sphere radii are small. This is expected since the relative
size of the interstitial region, where the new basis functions
matters, is larger in these cases. A summary of the potential
computational gain is shown in table 2. The two different
distorting functions give similar results, although the atom
centered distorting function (ADPW I) generates smoother
basis functions which in some cases leads to faster convergence
of eigenvalues with respect to number of basis functions. This
is probably a numerical artifact due to the expansion of the
new basis functions in a limited number of planewaves in
equation (10).

In a full implementation both distorting functions would
probably lead to basis sets that behave similarly and converge
faster than undistorted functions, with respect to the number
of basis functions used. In such an implementation the
matrix elements of the Hamiltonian and overlap matrices are
calculated in the new basis directly, which would be much
more efficient than the work-around presented in this paper.
However, special efforts have to be made to treat the MT
geometry. In the distorted space the MT spheres get deformed.
Then it is not so straightforward to get the augmentation

5
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(a) (b)

(c) (d)

Figure 5. Sum of eigenvalues minus the sum of eigenvalues for the converged solution with maximum RMT|G + k|max. Potassium has a large
lattice parameter, compared to the MT radius, and all the investigated structures are relatively open.

Table 2. Computational gain for the distortion ADPW I.

Species/structure M N

Speed up of
diagonalization
estimated as
t (N)/t (M) =
(N/M)3

Carbon
Single atom 485 1503 29.8
Graphite 230 296 2.13
Diamond 125 138 1.35

Copper
Single atom 619 1309 9.46
Wire 795 1687 9.55
bct 437 482 1.34
fcc 113 125 1.35

Iron
bcc 92 116 2.00

Potassium
Single atom 691 2301 36.9
Wire 467 815 5.31
bct 405 695 5.05
bcc 141 370 18.1

coefficients, to calculate the surface contribution to the kinetic
energy or to solve Poisson’s equation. One approach to achieve
this could be, for example, by allowing the MT spheres to
be non-spherical in real space so that they are spheres in
distorted space; another would be to do all the augmentations
by numerical means. The charge density may still be expressed

as an expansion on a large Fourier mesh, as is usually done in
the APW method [7].

4. Conclusions

A new set of basis functions, ADPW + lo, has been
investigated. It is found that it has the capacity for faster
convergence, since fewer basis functions are needed to
accurately describe the wavefunction in the interstitial region
and the matching at the MT boundary. In the present paper we
have shown that with a simplified implementation it is possible
for a range of different atomic species and crystal structures
to reduce the size of the secular matrix. The distortion of
space allowed for reduction in the basis set by up to a factor
of three for open structures, while giving the same eigenvalues
within fractions of mHa. The diagonalization is done using
the LAPACK 3.0 routine zhpgvx, which scales as matrix size
cubed (execution time t ∝ N3). This means a speed up of the
diagonalization of the secular matrix by up to a factor of 30.
It is worthwhile noting that in our simplified implementation
the variational principle does not allow ADPW + lo to give
lower energies than the APW + lo basis set which we expand
our basis functions in. With a larger planewave expansion the
accuracy of the ADPW + lo basis will improve.

The range of the distortion d could be put to 1.5 for most of
the investigated realistic systems without losing any precision
in the calculations. If a very small MT-sphere radius is used,
this value might have to be increased (as in the case of carbon).
The optimal strength of the distortion α varies between 0.5
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and 1 for single atoms and down towards 0.1 for close packed
systems. Further investigations are needed to see if there
is any systematic way of choosing the distorting strength of
different atomic species. It will also be desirable to investigate
other choices of distorting function to determine whether it
is possible to effectively exploit the fact that the variational
freedom in the interior of the spheres is not needed. A full
implementation that eliminates artifacts due to the truncation
of the planewave expansion of the basis functions might find a
‘universal’ distorting strength that works well for all systems.

We conclude that our results justify further studies in
order to determine how far this can be taken. Although
a full implementation of the method might increase the
efficiency of the method beyond the limit of the truncated
planewave expansion, this simple approach already has some
uses, especially for open structures where the gain in basis set
sizes is largest. More studies are needed until it is definite that
a full implementation of the ADPW + lo method, that works
in the distorted space both in the set-up of the secular matrices
and in the calculation of the charge density, is worthwhile.
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